Acid Rain

1. What is it?

- a. acid precipitation
 - i. in Canada: acid rain, acid snow and acid smog (smoke & fog)
- b. occurs when oxides of <u>sulfur</u> and <u>nitrogen</u> mix with <u>water</u> in the atmosphere
- c. "normal" rain has a pH of 5.6 (from dissolved carbon dioxide)

$$CO_2 + H_2O \rightarrow H_2CO_3$$

- d. H_2CO_3 carbonic acid is a weak acid (5.6 is a high number remember that neutral is a pH of 7)
- e. acid rain has a pH less than 5.6
- 2. Chemicals Involved
 - a. The two major chemicals involved are:
 - i. sulphur → sulphur oxides
 - ii. nitrogen → nitrogen oxides

Reactions involving sulphur

Order	Where it occurs	Reaction
1	sulphur combustion	$S + O_2 \rightarrow SO_2$
2	in air	$2SO_2 + O_2 \rightarrow 2SO_3$
3	in water vapour	$SO_3 + H_2O \rightarrow H_2SO_4$

^{*}sulfuric acid is a strong acid aka it ionizes almost completely in water

Reactions involving nitrogen

Order	Where it occurs	Reaction
1	in car engines	$N_2 + O_2 + heat \rightarrow 2NO$
2	in air	$2NO + O_2 \rightarrow 2NO_2$
3	in water vapour	$2NO_2 + H_2O \rightarrow 2HNO_2 + NO$

^{*}nitrous acid is a strong acid aka it ionizes almost completely in water

3. Sources of sulphur and nitrogen

- a. sulphur
 - i. burning fossil fuels
 - 1. coal and petroleum contain some sulphur
 - ii. smelting metal ores (Cu, Ni, Pb, Zn)
 - iii. burning gas in cars
 - iv. natural sources: "sour" natural gas and volcanic eruptions

V.

- b. nitrogen
 - i. combustion in car engines
 - ii. natural sources: plant decay

- 4. Effects of acid rain
 - a. irritates respiratory tract
 - b. reduces plant growth
 - c. decreases the pH of lakes and rivers
 - i. fish die when the pH is less than 4.5
 - d. causes the leaching of metals Mn, Cd, Al, Pb, Cu and Hg
 - i. examples of bioaccumulation of Al³⁺ in fish where a lake is affected by acid rain

$$Al(OH)_{3(s)} + 3H^{+}_{(aq)} \rightarrow Al^{3+}_{(aq)} + 3H_2O_{(l)}$$

- e. acid shock: a lake may become acid shocked when the pH of the run off is low (can be up to 100 X more acidic)
- f. reduces the durability of concrete, marble and iron
- 5. Reduction
 - a. reduce acidity in lakes by adding lime (CaCO₃)

$$CaCO_3 + H^+ \rightarrow Ca^{2+} + CO_2 + H_2O$$

- b. note: H+ from H₂SO₄ or HNO₃
- c. scrubbers on smoke stacks
- d. use low sulphur fuels
- e. adopt tougher emission standards on cars and smelters