Acids and Bases are Solutions

Solution:

```
 -homogeneous, one phase
 -impure
 -not a constant composition
 -made of solute + solvent (example: salt and water)
```

Solute:

-dissolved substance

-lesser amount (example: salt)

Solvent:

-dissolving substance

-greater amount (example: water)

Review

- ✓ acids and bases must be dissolved in water to act like an acid or base
- ✓ dissolving in water dissociates the acid or base into its ions
- ✓ we denote dissolved chemicals in water by (aq)
- ✓ acidic solutions contain H⁺ (protons)
- ✓ basic solutions contain OH⁻ (hydroxide ions)
- ✓ to receive full marks on evaluations, acid and base dissociation equations must include:
 - o balanced equation
 - o charges on ions
 - o (aq) subscript behind each ion
 - proper per notation of coefficient, symbole, charge and state
 2OH (aq)
 - \circ EXAMPLE: Mg(OH)₂ -> Mg²⁺_(aq) + 2OH⁻_(aq)

Write the dissociation equations for the following:

1. HBr ->

2. HI ->

3. HNO₃ ->

4. KOH ->

5. $Mg(OH)_2 \rightarrow$

6. $H_2SO_4 ->$

7. $AI(OH)_3 ->$

8. H₃PO₄ ->

9. $Mg(ClO_3)_2 ->$

10. NaOH ->

11. RbOH ->

12. Ba(OH)₂ ->

13. $Ba_3(PO_4)_2 \rightarrow$