The Activity Series

We have looked at several reactions:

Fe + CuSO₄
$$\rightarrow$$
 Cu + Fe₂(SO₄)₃

$$Li + H_2O \rightarrow LiOH + H_2$$

Such experiments reveal trends. The activity series ranks the relative reactivity of metals. It allows us to predict if certain chemicals will undergo single displacement reactions when mixed: metals near the top are most reactive and will displacing metals near the bottom. Q: Which of these will react?

Fe + CuSO₄ → Ni + NaCl Li + ZnCO₃ → Al + CuCl₂

Li Ca Mg Al Zn Fe Ni Sn Pb Н Cu Hg Αg

Na

H is the only nonmetal listed. H₂ may be displaced from acids or can be given off when a metal reacts with H₂O (producing H₂ + metal hydroxide). The reaction with H₂O depends on hot H₂O metal reactivity & water temp.

Q: will Mg react with H2O?

 $Mg + H_2O \rightarrow$

Q: $Zn + HCl \rightarrow$ Complete these reactions:

Al + H₂O(steam) →

Cu + $H_2O \rightarrow$

Ca + $H_2 SO_4 \rightarrow$ Na + $H_2O \rightarrow$

cold

н,О

steam

acid

Na

Li

Ca

Mg

Αl

Zn

Fe

Ni

Sn

Pb

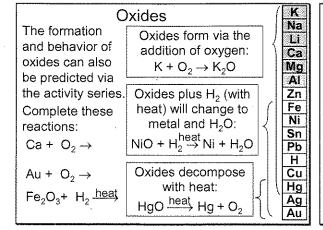
Н

Cu

Hq

Ag

Au


Other Activity Series Information

- All metals will have a specific place in the activity series. For simplicity, only the most common metals are shown.
- The metals near the top of the activity series are more reactive because their valence electrons are more easily removed.
- On tests and exams the activity series may appear as K, Na, ... Ag, Au; you must remember that K is reactive, Au is not.
- If the valence of a metal is not indicated in the question, use its most common valence (in bold on your periodic table) to determine the correct chemical formula.

Activity series lab

- 1. On the next slide, place a check in the corner of boxes where you think reactions will take place.
- Get a plastic spot plate and a glass rod.
- 3. Combine chemicals specified in the chart. Figure out a way to keep track of the chemicals. Use a 1/4 scoop for solids (the less, the better). Use 1 squeeze of an evedropper for solutions.
- 4. Write chemical equations for chemicals that reacted. Write NR where there was no reaction.
- Dump used chemicals into the large funnel at the front of the room (use a squirt bottle to rinse remaining chemicals into the funnel). Wash the spot plate and glass rod very well. Dry & return.

	Mg	Cu	Zn
Agi	Mg + AgNO ₃	<u></u>	
AgNO ₃	$Mg + AgNO_3^{IV}$ \rightarrow $Ag + Mg(NO_3)_2^{IV}$		·
H_2SO_4		L _m .	
Fe(NO ₃) ₃	1		
CuCl ₂			

