Unit: Organic Chemistry Text Reference: pg.212-214

Aldehydes

Aldehydes take the general form of:

- Aldehydes are part of the carbonyl group because the double bond <u>occurs at</u> the end of the carbon chain.
- Aldehydes are <u>SMELLY! Small</u> ones smell <u>gross</u> (formaldehyde). <u>Big</u> ones smell <u>nice</u> (flowers, essential oils).

Naming Aldehydes/Determining Formulas: (drop the '-e' add '-al')

Step 3: fill in remaining positions with hydrogen bonds

Ketones

Ketones take the general form of:

- Like aldehydes, ketones are members of the carbonyl group because of the double bond between carbon and oxygen.
- Difference is that in ketones, the double oxygen bond occurs anywhere on the hydrocarbon chain, but, not at one of the ends.
- Ketones are nearly **odourless**. Pheromones are an example of ketones. (Pheromones are chemical signals that change the behavior of another animal of the same species.)
 - o another example is propanone (a.k.a. acetone, which is in nail polish remover)

Naming Keytones/Determining Formulas: (drop the '-e' and add '-one')

Properties of Aldehydes and Ketones:

- strongly polar compounds (due to double bond between C atom and O atom).
- both, aldehydes and ketones have lower boiling points than alcohols of similar sizes and both are, in general, less soluble in water than alcohols.
- very soluble in water because of high polarity
- bigger they get (in terms of chain length), the more non-polar they become
- because they mix well with polar and non-polar substances they are good solvents.

Unit: Organic Chemistry Text Reference: pg.212-214

Example 1. Draw the structural diagram for 2- pentanone.

Step 1: draw carbon backbone

Step 2: locate and draw in carbonyl group.

Step 3: fill in remaining positions with hydrogen bonds

HMRK: pg. 213-214

#1-3, 4(recommended for study purposes)