Aldehydes and Ketones

- The functional group C=O is called the **carbonyl group**
- For <u>aldehydes</u>, the carbonyl functional group is at the <u>end</u> of the molecule
 - o i.e., the carbon in C=O is bonded to **one** or **zero** carbon atoms
- For **ketones**, the carbonyl functional group is **inside** the molecule
 - o i.e., the carbon in C=O is bonded to **two** carbon atoms

Naming Aldehydes

- 1. Identify the parent alkane chain.
- 2. Replace the final "e" with an "al".

E.g.

Naming Ketones

- 1. Identify the parent alkane chain.
- 2. Replace the final "e" with an "one".
- 3. Indicate which carbon has the double bonded O using a number in front of the name.

E.g.

Properties of Aldehydes and Ketones

Aldehydes

• Aldehydes are <u>SMELLY</u>! <u>Small</u> ones smell <u>gross</u> (formaldehyde). <u>Big</u> ones smell <u>nice</u> (flowers, essential oils).

Ketones

- Ketones are nearly **odourless**. Pheremones are an example of ketones.
 - Another example is propanone (a.k.a. acetone, which is in nail polish remover)

*** Both aldehydes and ketones are **polar** and **dissolve in water**. ***

• but the **bigger** they get, the more **non-polar** they become

Aldehydes and Ketones

• The functional group C=O is called the
• For, the carbonyl functional group is at the of the molecul
o i.e., the carbon in C=O is bonded to or carbon atoms
• For, the carbonyl functional group is the molecule
o i.e., the carbon in C=O is bonded to carbon atoms
Naming Aldehydes
1. Identify the parent alkane chain.
2. Replace the final "e" with an "al".
E.g.
Naming Ketones
1. Identify the parent alkane chain.
2. Replace the final "e" with an "one".

3. Indicate which carbon has the double bonded O using a number in front of

the name.

E.g.

Properties of Aldehydes and Ketones

Aldehydes				
• Aldehy	des are	!	ones smell	(formaldehyde
(ones smell	(flowers,	essential oils).	
Ketones				
• Ketone	s are nearly	Pheron	nones are an exam	ple of ketones.
	Another example emover)	is propanone	(a.k.a. acetone, w	hich is in nail polish
*** D 04h 01d0	Javedoo on d Iroton		on d	***
	•			
• Ketone o A r *** Both alde	Another example emover)	is propanone	(a.k.a. acetone, w	hich is in nail po