Amounts In Chemistry: The Mole \& Molar Mass

A. The Mole

- Quantity that we use to measure chemical entities
- Symbol - n, unit - mol
- Avogadro's Number - used to determine the number of atoms or molecules from the number of moles
- Symbol - N_{A}, unit - atoms or molecules
- $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$

B. Molar Mass

- Symbol - M, unit - g/mol
- Atomic mass from the periodic table

C. IDIOT TRIANGLES

D. Examples:

1. Calculate the number of atoms of sodium in a 3.75 mol sample.

G: $\quad \mathrm{n}=3.75 \mathrm{~mol}$
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$
R: $\mathrm{N}=$? atoms
A: $\mathrm{N}=\mathrm{N}_{\mathrm{A}} \mathrm{x}$
S: $\quad \mathrm{N}=3.75 \mathrm{~mol} \times 6.02 \times 10^{23}$ atoms $/ \mathrm{mol}$ $=2.26 \times 10^{24}$ atoms

P: The number of sodium atoms is 2.26×10^{24}
2. Calculate the mass of 0.330 mol of magnesium.

$$
\text { G: } \begin{aligned}
& \mathrm{n}=0.330 \mathrm{~mol} \\
& \mathrm{M}=24.3 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

R: $m=? \mathrm{~g}$
A: $m=n \times M$

$$
\text { S: } \begin{aligned}
\mathrm{m} & =0.330 \mathrm{~mol} \times 24.3 \mathrm{~g} / \mathrm{mol} \\
& =8.02 \mathrm{~g}
\end{aligned}
$$

$\mathbf{P}: \quad$ The mass of the magnesium is 8.02 g

