
Models of the Atom: a Historical Perspective

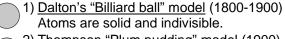
Early Greek Theories

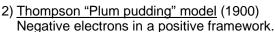
This led to the idea of atoms in a void.

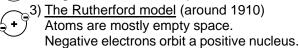
 350 B.C - Aristotle modified an earlier theory that matter was made of four "elements": earth, fire, water, air.

• Aristotle was wrong. However, his theory persisted for 2000 years.

John Dalton

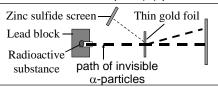

• 1800 -Dalton proposed a modern atomic model based on experimentation not on pure reason.




- All matter is made of atoms.
- Atoms of an element are identical.
- Each element has different atoms.
- Atoms of different elements combine in constant ratios to form compounds.
 Atoms are rearranged in reactions.
- His ideas account for the law of conservation of mass (atoms are neither created nor destroyed) and the law of constant composition (elements combine in fixed ratios).

Adding Electrons to the Model

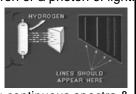
Materials, when rubbed, can develop a charge difference. This electricity is called "cathode rays" when passed through an evacuated tube (demos). These rays have a small mass and are negative. Thompson noted that these <u>negative</u> subatomic particles were a fundamental part of all atoms.



Ernest Rutherford (movie: 10 min.)

• Rutherford shot alpha (α) particles at gold foil.

Most particles passed through. So, atoms are mostly empty. Some positive α-particles deflected or bounced back!
Thus, a "nucleus" is positive & holds most of an atom's mass.


Aristotle

Bohr's model

Electrons orbit the nucleus in "shells"
Electrons can be bumped up to a higher shell if hit by an electron or a photon of light.

There are 2 types of spectra: continuous spectra & line spectra. It's when electrons fall <u>back down</u> that they release a photon. These jumps down from "shell" to "shell" account for the line spectra seen in gas discharge tubes (through spectroscopes).

Atomic numbers, Mass numbers

- There are 3 types of subatomic particles. We already know about electrons (e⁻) & protons (p⁺). Neutrons (n⁰) were also shown to exist (1930s).
- They have: no charge, a mass similar to protons
- Elements are often symbolized with their mass number and atomic number
 E.g. Oxygen: ¹⁶₈O
- These values are given on the periodic table.
- For now, round the mass # to a whole number.
- These numbers tell you a lot about atoms.
 # of protons = # of electrons = atomic number
 # of neutrons = mass number atomic number
- Calculate # of e⁻, n⁰, p⁺ for Ca, Ar, and Br.

Bohr - Rutherford diagrams

- Putting all this together, we get B-R diagrams
- To draw them you must know the # of protons, neutrons, and electrons (2,8,8,2 filling order)
- Draw protons (p+), (n0) in circle (i.e. "nucleus")
- Draw electrons around in shells

Isotopes and Radioisotopes

- Atoms of the same element that have different numbers of neutrons are called isotopes.
- Due to isotopes, mass #s are not round #s.
- Li (6.9) is made up of both ⁶Li and ⁷Li.
- Often, at least one isotope is unstable.
- It breaks down, releasing radioactivity.
- These types of isotopes are called radioisotopes
- Q- Sometimes an isotope is written <u>without</u> its atomic number e.g. ³⁵S (or S-35). Why?
- Q- Draw B-R diagrams for the two Li isotopes.