Balancing Equations: Chemical and Nuclear

How molecules are symbolized

- · Molecules may also have brackets to indicate numbers of atoms. E.g. Ca(OH)₂
- Notice that the OH is a group
- The 2 refers to both H and O
- How many of each atom are in the following?
 - Na = , O = , H =a) NaOH
- b) $Ca(OH)_2$ Ca = , O = , H =
- c) $3Ca(OH)_2$ Ca = , O = , H =

Na

Li

ΑI

Zn

Fe

Ni

Sn

Pb

Н

Cu

Hg

Ag

Balancing equations: MgO

- The law of conservation of mass states that matter can neither be created or destroyed
- Thus, atoms are neither created or destroyed, only rearranged in a chemical reaction
- Thus, the number of a particular atom is the same on both sides of a chemical equation
- Example: Magnesium + Oxygen (from lab)
- Mg + $O_2 \rightarrow MgO$ (Mg) + $O(O) \rightarrow (MgO)$

- · However, this is not balanced
- Left: Mg = 1, O = 2
- Mg = 1, O = 1Right:

Balance equations by "inspection"

 $\text{Mg + } \text{O}_{\mathbf{2}} \rightarrow \text{MgO}$ From $2Mg + O_2 \rightarrow 2MgO$ is correct $Mg + \frac{1}{2}O_2 \rightarrow MgO$ is incorrect $Mg_2+ O_2 \rightarrow 2MgO$ is incorrect $4Mg + 2O_2 \rightarrow 4MgO$ is incorrect

Hints: start with elements that occur in one compound on each side. Treat polyatomic ions that repeat as if they were a single entity

- $P_4 + O_2 \rightarrow P_4O_{10}$ Li + $H_2O \rightarrow H_2 + LiOH$
- $Bi(NO_3)_3 + K_2S \rightarrow Bi_2S_3 + KNO_3$
- $C_2H_6 + O_2 \rightarrow CO_2 + H_2O$

Balance these skeleton equations:

- a) Mg + HCl \rightarrow MgCl₂ + H₂
- b) Ca + $N_2 \rightarrow Ca_3N_2$
- c) $NH_4NO_3 \rightarrow N_2O + H_2O$
- d) $BiCl_3 + H_2S \rightarrow Bi_2S_3 + HCI$
- e) $C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$
- f) $O_2 + C_6H_{12}O_6 \rightarrow CO_2 + H_2O$
- g) $NO_2 + H_2O \rightarrow HNO_3 + NO$
- h) $Cr_2(SO_4)_3$ + NaOH \rightarrow $Cr(OH)_3$ + Na₂SO₄
- i) $AI_4C_3 + H_2O \rightarrow CH_4 + AI(OH)_3$

Returning to reaction types

- We have looked at several types of reactions without worrying about balancing Ca
- However, all equations should be balanced Mg
- Predict the products and balance these: (recall, metals above replace metals below, reactions with water yield metal hydroxides)

Fe + CuSO₄ \rightarrow

Ni + NaCl

Al + CuCl₂ \rightarrow

Li + $ZnCO_3 \rightarrow$

Li + H₂O

 $AI + O_2$

Discovery of Radioactivity

- Radioactivity is the release of energy or particles when an atom disintegrates (demo)
- Radioactivity was discovered when minerals were exposed to film through an opaque cover
- The 3 types of radioactivity can be shown by passing emissions through an electrical field:

Types of Radioactivity

Types of radiation: 1) α , 2) β , 3) γ

- 1. Alpha (α) particles are symbolized as ⁴₂He
- 2. Beta (β) particles (essentially electrons) are ⁰₋₁e
- 3. Gamma (γ) rays are symbolized as ${}^{0}_{0}\gamma$
- You can determine the composition of each: α : mass of 4 u, charge of +2 (2 p⁺, 2 n⁰, 0 e⁻)
- Other symbols: proton = $^{1}_{0}$ p, neutron = $^{1}_{0}$ n
- There are different terms to describe the different types of nuclear reactions
- "alpha decay" means an α particle is given off.
- Other: beta decay, fusion (meaning to bring together), fission (meaning to break apart)

Nuclear equations

- Q. Write the beta decay for C-14
- Q. Write the alpha decay for ²⁰⁹Po
- Q. Complete this fission reaction

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\rightarrow 3^{1}_{0}$ n + $^{139}_{56}$ Ba +

In all cases, charge and mass must be balanced

Practice: pg. 222-3, Q6, Q3