

Multiplication and division

- We can do a similar operation with multiplication and division
- E.g. $5 x=7$, what does x equal?
- We divide each side by 5 (to isolate x) ...
- $5 x / 5=7 / 5 \ldots x=7 / 5 \ldots x=1.4$
- Alternatively, we can represent this as 5 moving to the other side of the equals sign ...
- $5 x=7$ becomes $x=715$
- Thus, for multiplication and division, when you change sides you change position (top to bottom, bottom to top)

Multiplication and division

- This time, isolate b in the equation:

$$
\frac{(x)(y)}{5}=\frac{7 a}{b}
$$

- Move b to the other side (it must be on top) ...

$$
\frac{(x)(y)}{5}=\frac{7 a}{b}
$$

- Move everything to the other side of b
$\xrightarrow[5]{(\mathrm{b})(\mathrm{x})(\mathrm{y})}>7 \mathrm{a}$
$\mathbf{b}=\frac{35 a}{x y}$ Q - Rearrange the following
equation to isolate each variable $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
(you should have 6 equations) equation to isolate each variab
(you should have 6 equations)

Manipulating Variables in equations

- Often in an equation we want to isolate some variable, usually the unknown
- From math: what ever you do to one side of an equation you have to do to the other side
- Doing this keeps both sides the same
- E.g. $x+5=7$, what does x equal?
- We subtract 5 from both sides ...
- $x+5-5=7-5$, thus $x=2$
- Alternatively, we can represent this as 5 moving to the other side of the equals sign ...
- $x+5=7$ becomes $x=7-5$ or $x=2$
- Thus, for addition or subtraction, when you change sides you change signs

Multiplication and division

- Let's look at a more complicated example:

$$
\frac{(x)(y)}{5}=\frac{7 a}{b}
$$

- Isolate a in the equation:
- Move b to the other side (from bottom to top)

- Move 7 to the other side (from top to bottom)

$$
\begin{aligned}
& \frac{(x)(y)(b)}{5}=7 a \\
& \frac{(x)(y)(b)}{(5)(7)}=a \text { or } a=\frac{(x)(y)(b)}{(35)}
\end{aligned}
$$

Combining the gas laws

- So far we have seen two gas laws:

$P_{1} V_{1}=P_{2} V_{2}$
$\frac{V_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$

Joseph Louis Gay-Lussac

These are all subsets of a more encompassing law: the combined gas law
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
Read pages 437, 438. Do Q 26 - 33 (skip 31)

