Concentration vs Strength

*Recall our dissociation equations.

See the images below and examine the dissociation. A weak acid will not have much dissociation. Giving up a proton means separating the H⁺ from the metal or polyatomic ion. In other words it means the same thing as dissociation.

** Note that bases dissociate in the very same fashion but with an OH.

Carefully examine the images and see the difference between a weak (top) and a strong (bottom) acid. Note that the weak acid barely dissociates where as the strong acid mostly dissociates in water.

1. HA is a concentrated strong acid.

- most of the HA has dissociated (strength)
- a lot of H⁺ and A⁻ (strength)
- a lot of chemical (concentration)

2. HA is a concentrated weak acid.

- most of the HA has <u>not</u> dissociated (strength)
- a lot of HA and not much H⁺ and A⁻ (strength)
- a lot of chemical (concentration)

3. HA is a dilute strong acid.

- most of HA has dissociated (strength)
- mainly H+ and A- (strength)
- not much chemical (concentration)

4. HA is a dilute weak acid.

HA H⁺ A⁻ HA

- most of HA has not dissociated (strength)
- mainly HA (strength)
- not much chemical (concentration)