Electronegativity

The element that is farther right on the periodic table will be δ . This is the more electronegative atom. It has the higher Pauling's number. Recall Δ EN from unit 1.

Example: H₂O

$$H = 2.20$$
 so δ +

$$0 = 3.44 \text{ so } \delta^{-}$$

O is farther right so the shared e^{-} are closer to its nucleus. O is then δ^{-} .

 $\Delta EN = EN2-EN1 = 3.44-2.20 = 1.24$

The bonds between H and O are therefore polar covalent.

ΔEN – predicting bond type

non polar covalent: 0-0.4 polar covalent: 0.5-1.6 ionic: 1.7 +

*Remember that EN2 is always the larger number. You find Pauling's numbers on the back of your periodic table.

Note: δ signifies partial or slightly

Calculate the Δ EN for the following and predict the bond types.

 CO_2

 H_2S

 NH_3