Ethers

Ethers take the general form of:

The functional group that is common to all ethers is an oxygen atom single bonded to two carbon atoms. An ether consists of a hydrocarbon chain linked to oxygen then another hydrocarbon chain linked on the other side of the oxygen atom.

Naming Ethers/Determining Formulas:

Properties of Ethers:

- more polar than hydrocarbons because of C-O bonds (oxygen is more electronegative)
- boiling point of ethers is slightly higher than hydrocarbons, but lower than alcohols
- like alcohols, ethers are good solvents for organic reactions because they readily mix with polar and non-polar substances.

Compound	Structure	Boiling point (°C)
ethane	CH ₃ -CH _{3(g)}	-89
methoxymethane (dimethyl ether)	CH ₃ -O-CH _{3(g)}	-23
ethanol	CH ₃ -CH ₂ -O-H ₍₁₎	78.5

Unit: Organic Chemistry Text Reference: pg.207-208

Example 1: Draw the structural diagram and determine the formula for:

methoxyethane.

Step 1: draw carbon backbone with oxygen:

Step 2: fill in remaining positions with hydrogen bonds

or

Example 2: Write the name of the ether that has the condensed structural formula $CH_3CH_2CH_2CCH_3$.

Step 1: count carbon atoms in each chain to determine prefix and suffix

Step 2: look at a functional group

Step 3: put together name, remembering that the smallest hydrocarbon chain is listed first

methoxybutane

Hmrk: Determine the structural formula, condensed structural formula and formulas for:

- a) methoxymethane
- b) ethoxyhexane
- c) ethoxyethane (also called diethyl ether)