Example Calculations Involving the Mole

A. Calculations Involving Atoms

• Eg: Calculate the mass, in grams, of 2.00 mol of calcium atoms.

Given:
$$n_{Ca} = 2.00 \text{ mol}$$

 $M_{Ca} = 40.08 \text{ g/mol}$

Required:
$$m_{Ca} = ? g$$

Analysis:
$$m = n \times M$$

Solution:
$$m_{Ca} = 2.00 \text{ mol x } 40.08 \text{ g/mol}$$

= 80.16 g

Paraphrase: The mass of 2.00 mol of calcium is 80.16g.

• Eg: How many atoms of sulphur are in a 230 g sample of pure sulfur?

Given:
$$m_S = 230 \text{ g}$$

 $M_S = 32.06 \text{ g/mol}$

Required: 1.
$$n_s = ? \text{ mol}$$

2. $N_s = ? \text{ atoms}$

Analysis: 1.
$$n_s = m_s/M_s$$

2. $N_s = n_s \times N_A$

Solution: 1.
$$n_s = 230 \text{ g}/32.06 \text{ g/mol}$$

= 7.17 mol
2. $N_s = 7.17 \text{mol} \times 6.02 \times 10^{23} \text{atoms/mol}$
= 4.32 x 10²⁴ atoms

Paraphrase: There are 4.32 x 10²⁴ atoms of sulphur in a 230 g sample.

B. Calculations Involving Molecules and Compounds

o Eg: Calculate the mass of 2.00 mol of sodium fluoride.

Given:
$$n_{NaF} = 2.00 \text{ mol}$$

 $M_{NaF} = 41.99 \text{ g/mol}$

Required:
$$m_{NaF} = ?g$$

Analysis:
$$m_{NaF} = M_{NaF} \times n_{NaF}$$

Solution:
$$m_{NaF} = 41.99 \text{ g/mol x } 2.00 \text{ mol}$$

= 84.00 g

Paraphrase: The mass of 2.00 mol of sodium fluoride is 84.00g.

 \circ Eg: How many molecules of Fe₂O₃, are in a 77.2 g sample?

Given:
$$m_{Fe2O3} = 77.2 \text{ g}$$

 $M_{Fe2O3} = 159.7 \text{ g/mol}$

Required: 1.
$$n_{Fe2O3} = ? mol$$

2. $N_{Fe2O3} = ? molecules$

Analysis: 1.
$$n_{Fe2O3} = m_{Fe2O3}/N_{Fe2O3}$$

2. $N_{Fe2O3} = n_{Fe2O3} \times N_A$

Solution: 1.
$$n_{Fe2O3} = 77.2 \text{ g} / 159.7 \text{ g/mol}$$

= 0.483 mol

2.
$$N_{Fe2O3} = 0.483 \text{mol x } 6.02 \text{x} 10^{23} \text{ molecule/mol}$$

= 2.91 x 10²³ molecules

Paraphrase: There are 2.91×10^{23} molecules of Fe₂O₃ in a 77.2g sample.