More Example Calculations Involving the Mole

A. Calculating the Number of Atoms from the Mass of Molecules

- Eg: Sand is composed of silicon dioxide, SiO_{2}. How many atoms of oxygen are in a bag pure sand, which contains 1.00 kg of silicon dioxide?

Given: $\quad \mathrm{m}_{\mathrm{SiO} 2}=1.00 \mathrm{~kg}$ or 1000 g

$$
\mathrm{M}_{\mathrm{SiO} 2}=60.09 \mathrm{~g} / \mathrm{mol}
$$

Required: $\mathrm{N}_{\mathrm{O}}=$? atoms
Analysis: $\mathrm{N}_{\mathrm{O}}=\mathrm{m} / \mathrm{M} \times \mathrm{N}_{\mathrm{A}} \times 2$
Solution: $\quad \mathrm{N}_{\mathrm{O}}=1000 \mathrm{~g} / 60.09 \mathrm{~g} / \mathrm{mol} \mathrm{x} \mathrm{N}_{\mathrm{A}} \times 2$

$$
=2.00 \times 10^{25} \text { atoms of O }
$$

Paraphrase: There are 2.00×10^{25} atoms of oxygen in a 1.00 kg bag of sand.

- Eg: How many atoms of sulfur are in an 18 g chunk of solid sulfur $\left(\mathrm{S}_{8}\right)$?

Given: $\quad \mathrm{m}_{\mathrm{S} 8}=18.0 \mathrm{~g}$

$$
\mathrm{M}_{\mathrm{S} 8}=256.48 \mathrm{~g} / \mathrm{mol}
$$

Required: $\mathrm{N}_{\mathrm{S}}=$? atoms
Analysis: $\mathrm{N}=\mathrm{m} / \mathrm{M} \times \mathrm{N}_{\mathrm{A}} \times 8$
Solution: $\quad \mathrm{N}=18 \mathrm{~g} / 256.48 \mathrm{~g} / \mathrm{mol} \mathrm{x}_{\mathrm{A}} \mathrm{x} 8$

$$
=3.38 \times 10^{23} \text { atoms }
$$

Paraphrase: There are 3.38×10^{23} atoms of sulfur in an 18 g sample of S_{8}.

