More Example Calculations Involving the Mole

A. Calculating the Number of Atoms from the Mass of Molecules

• Eg: Sand is composed of silicon dioxide, SiO₂. How many atoms of oxygen are in a bag pure sand, which contains 1.00 kg of silicon dioxide?

Given: $m_{SiO2} = 1.00 \text{ kg or } 1000 \text{ g}$ $M_{SiO2} = 60.09 \text{ g/mol}$

Required: $N_0 = ?$ atoms

Analysis: $N_0 = m/M \ge N_A \ge 2$

Solution: $N_O = 1000 \text{ g}/60.09 \text{ g/mol x } N_A \text{ x } 2$ = 2.00 x 10²⁵ atoms of O

Paraphrase: There are 2.00×10^{25} atoms of oxygen in a 1.00 kg bag of sand.

• Eg: How many atoms of sulfur are in an 18 g chunk of solid sulfur (S₈)?

Given: $m_{S8} = 18.0 \text{ g}$ $M_{S8} = 256.48 \text{ g/mol}$ Required: $N_S = ? \text{ atoms}$ Analysis: $N = m/M \times N_A \times 8$ Solution: $N = 18 \text{ g}/256.48 \text{ g/mol} \times N_A \times 8$ $= 3.38 \times 10^{23} \text{ atoms}$

Paraphrase: There are 3.38×10^{23} atoms of sulfur in an 18 g sample of S₈.