Flame Tests

Question

What is the unidentified metal in a metallic compound?

Analysis

(a) Assemble your observations for the identified samples into a flame test identification key (Table 1), which you can use as a quick reference.

Table 1 Flame Test Identification Key for Some Metallic Compounds

Metallic compound	Flame test colour
solid sodium nitrate, NaNO _{3(s)}	
solid sodium chloride, NaCl _(s)	
aqueous sodium chloride, NaCl _(aq)	
solid calcium chloride, CaCl _{2(s)}	
solid strontium chloride, SrCl ₂₍₅₎	
solid lithium chloride, LiCl _(s)	
solid potassium chloride, KCI _(s)	
solid copper(II) chloride, CuCl _{2(s)}	

Flame test colour of the unidentified metallic compound:	
--	--

⁽b) Analyze your observations, and then answer the Question.

Evaluation

- (c) Suggest possible sources of error in this activity, and describe their possible effects on your results. What changes could you make to the Procedure to reduce these sources of error?
- (d) Compare the results of your flame tests for solid sodium nitrate, solid sodium chloride, and sodium chloride solution. What do these results indicate?
- (e) Compare the results of your flame tests for potassium chloride and sodium chloride, with and without the cobalt glass. What was the purpose of the cobalt glass?

Synthesis

- (f) **Figure 1** (Activity 1.7 in the Student Text) shows the results of four flame tests. Using your flame test identification key, identify the metal in each compound in **Figure 1**.
- (g) Explain why flame tests are a qualitative analysis technique. Use the Procedure and observations in this activity to support your answer.
- (h) Flame emission spectroscopy is a technique that is used to identify the components of different types of matter. Using electronic and print resources, compile a list of situations in which flame emission spectroscopy is used.

www.science.nelson.com