Making Acids and Bases via Combustion

Element Burned	Substance Produced	Litmus test when substance is put in water	Acid or Base	Compound Produced

The Relative Strength of Acids and Bases

\circ Some acids like H ₂ SO ₄ (car battery acid) can b	ourn a hole in you	r clothing.
---	--------------------	-------------

-strong acid

- o Some acids like acetic acid (vinegar) we eat.
 - weak acid
- o Some bases NaOH (toilet bowl cleaners) can burn your skin.
 - -strong base
- o Some bases CaCO₃ (antacids) are used to treat upset stomachs.
 - -weak base

The pH Scale

- The **pH scale** is used to measure strength by measuring hydrogen ions (H⁺).
- o pH scale ranges from 1 to 14
- \circ pH = 7 is neutral
- \circ pH = -log[H⁺]
- The lower the number, the more H⁺ there are in solution.

Recall Dissociation/Ionization:

$$H_2SO_4 \rightarrow 2H^+ + SO_4^{-2}$$

✓ this solution will have a pH from 1 - 6.9 acidic because there are more H⁺ than OH⁻

pH = 7 is neutral (same amount of H⁺ and OH⁻)

- ✓ this solution will have a pH from 7.1 14 basic because there are less H⁺ than OH⁻
- o water is neutral pH=7 since H⁺ = OH⁻
- The difference between numbers on the pH scale is a factor of 10.
 - o 5 to 4 means it's a stronger acid by a factor of 10
 - o 11 to 12 means it's a stronger base by a factor of 10

The strength of pH 4 compared to 6 is

The strength of pH 10 compared to 14 is

The strength of pH 5 compared to 4 is

______.

pH Questions

1.	Indicate if the	following	are acidic,	basic or	neutral.
----	-----------------	-----------	-------------	----------	----------

- a. pH 5.4
- b. pH 11.5
- c. pH 14
- d. pH 2.1
- e. pH 7
- f. pH 6.7

2. Indicate which of the following is the stronger acid.

- a. pH 4 or pH 2
- b. pH 2 or pH 6.5
- c. pH 7 or pH 5
- d. pH 1.1 or pH 1.2
- e. pH 1 or pH 14

3. Indicate which of the following is the stronger base.

- a. pH 7 or pH 14
- b. pH 11 or pH 10
- c. pH 9 or pH 8.3
- d. pH 13 or pH 13.5
- e. pH 6 or pH 11

4. Compare the strengths using the pH scale.

a. pH 4 is 100 x stronger than pH 6
b. pH 5 is x than pH 6
c. pH 7 is x than pH 4
d. pH 11 is x than pH 7
e. pH 3 is x than pH 2

f. pH 11 is _____ x ___ than pH 13

5. What does the pH scale indicate?

6. Why is water considered neutral?