

Calculations with molar solutions

Q: How many moles of NaCl are required to make 7.5 L of a 0.10 M solution?
$\mathrm{M}=\mathrm{n} / \mathrm{L}, \mathrm{n}=0.10 \mathrm{M} \times 7.5 \mathrm{~L}=0.75 \mathrm{~mol}$
$\# \mathrm{~mol} \mathrm{NaCl}=7.5 \mathrm{~K} \times \frac{0.10 \mathrm{~mol} \mathrm{NaCl}}{1 \npreceq}=0.75 \mathrm{~mol}$
But in the lab we weigh grams not moles, so ...
Q: How many grams of NaCl are required to make 7.5 L of a 0.10 M solution?
\# g NaCl $=$
$7.5 \mathrm{~K} \times \frac{0.10 \mathrm{NaCt}}{1 \mathrm{~K}} \times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{NaCl}}=43.83 \mathrm{~g}$
Read pages 288-290. Do Q 19-22

More Practice Questions

1. How many grams of nitric acid are present in 1.0 L of a $1.0 \mathrm{M} \mathrm{HNO}_{3}$ solution?
2. Calculate the number of grams needed to produce
1.00 L of these solutions: a) $1.00 \mathrm{M} \mathrm{KNO}_{3}$
b) $1.85 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
c) $0.67 \mathrm{M} \mathrm{KClO}_{3}$
3. Calculate the \# of grams needed to produce each:
a) 0.20 L of 1.5 M KCl b) 0.160 L of 0.300 M HCl
c) 0.20 L of $0.09 \mathrm{~mol} / \mathrm{L} \mathrm{AgNO}_{3}$
d) 250 mL of $3.1 \mathrm{~mol} / \mathrm{L} \mathrm{BaCl}_{2}$
4. Give the molarity of a solution containing 10 g of each solute in 2.5 L of solution: a$\left.) \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{~b}\right) \mathrm{Ca}(\mathrm{OH})_{2}$
5. Describe how 100 mL of a $0.10 \mathrm{~mol} / \mathrm{L}$ NaOH solution would be made.

What are molar solutions?
A molar solution is one that express "concentration" in moles per volun Usually the units are in mol/L $\mathrm{mol} / \mathrm{L}$ can be abbreviated as M or [] Molar solutions are prepared using: a balance to weigh moles (as grar a volumetric flask to measure litre L refers to entire volume, not water! Because the units are mol/L, we can use the equation $M=n / L$
 Alternatively, we can use the factor label method

Practice making molar solutions

1. Calculate \# of grams required to make 100 mL of a 0.10 M solution of NaOH (see above).
2. Get volumetric flask, plastic bottle, 100 mL beaker, eyedropper. Rinse all with tap water.
3. Fill a beaker with distilled water.
4. Pour $20-30 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ from beaker into flask.
5. Weigh NaOH . Add it to flask. Do step 5 quickly.
6. Mix (by swirling) until the NaOH is dissolved.
7. Add distilled $\mathrm{H}_{2} \mathrm{O}$ to just below the colored line.
8. Add distilled $\mathrm{H}_{2} \mathrm{O}$ to the line using eyedropper.
9. Place solution in a bottle. Place label (tape) on bottle (name, date, chemical, molarity). Place bottle at front. Rinse \& return equipment.

Answers \& Notes

