The Mole

Q: how long would it take to spend a mole of \$1 coins if they were being spent at a rate of 1 billion per second?

Background: atomic masses

- Look at the "atomic masses" on the periodic table. What do these represent?
- E.g. the atomic mass of C is 12 (atomic # is 6)
- We know there are 6 protons and 6 neutrons
- Protons and neutrons have roughly the same mass. So, C weighs 12 u (atomic mass units).
- · What is the actual mass of a C atom?
- Answer: approx. 2 x 10⁻²³ grams (protons and neutrons each weigh about 1.7 x10⁻²⁴ grams)

Two problems

- 1. Atomic masses do not convert easily to grams
- 2. They can't be weighed (they are too small)

The Mole

With these problems, why use atomic mass at all?

- 1. Masses give information about # of p+, n0, e-
- 2. It is useful to know relative mass

E.g. Q - What ratio is needed to make H₂O? A - 2:1 by atoms, but 2:16 by mass

- It is useful to associate atomic mass with a mass in grams. It has been found that 1g H, 12g C, or 23g Na have 6.02x10²³ atoms
- 6.02 x 10²³ is a "mole" or "Avogadro's number"
- "mol" is used in equations, "mole" is used in writing; one gram = 1 g, one mole = 1 mol.
- Read 4.3 (167-9). Stop after text beside fig 2.
- Do Q1-6. Challenge: 1st slide (use reasonable units)

Comparing sugar (C₁₂H₂₂O₁₁) & H₂O

	0 12	22 11 ⁻
Same	1 gram each	1 mol each
volume?		
mass?		
# of moles?		
# of molecules?		
# of atoms?		

Molar mass

- The mass of one mole is called "molar mass"
- E.g. 1 mol Li = 6.94 g Li
- This is expressed as 6.94 g/mol
- What are the following molar masses?
 S SO₂
 Cu₃(BO₃)₂

Calculate molar masses (to 2 decimal places)
CaCl₂

 $(NH_4)_2CO_3$

 O_2

 $Pb_3(PO_4)_2$

C₆H₁₂O₆

Converting between grams and moles

- If we are given the # of grams of a compound we can determine the # of moles, & vise-versa
- In order to convert from one to the other you must first calculate molar mass

g = mol x g/mol $mol = g \div g/mol$

	9	
mol	g/	mol


• This can be represented in an "equation triangle"

Formula	g/mol	g	mol (n)	Equation
HCI			0.25	g= g/mol x mol
H ₂ SO ₄		53.15		
NaCl			3.55	
Cu		1.27		

Simplest and molecular formulae

Consider NaCl (ionic) vs. H₂O₂ (covalent)

- Chemical formulas are either "simplest" (a.k.a. "empirical") or "molecular". Ionic compounds are always expressed as simplest formulas.
- Covalent compounds can either be molecular formulas (I.e. H₂O₂) or simplest (e.g. HO)
- Q Write simplest formulas for propene (C_3H_6), C_2H_2 , glucose ($C_6H_{12}O_6$), octane (C_8H_{14})
- Q Identify these as simplest formula, molecular formula, or both H₂O, C₄H₁₀, CH, NaCl