Organic Compounds

A. Introduction

Hydrocarbons: compounds that contain only hydrogen &carbon eg. petroleum, coal & natural gas

Organic Compounds: any compound containing covalently bonded carbon atoms

Inorganic Compounds: everything else, only simple carbon containing molecules eg. CO, CO₂

- B. Sources of Organic Compounds most come from living compounds
 - Fossil Fuels are products of decomposition of once living organisms, formed beneath
 the Earth's surface by the action of great pressure and high temperature over millions of
 years.
 - Petrochemicals are organic compounds from oil & natural gas.

C. Properties of the Carbon Atom

- Carbon can make up to 4 bonds with other atoms of itself or different elements.
- Carbon readily bonds with other carbons to form chains, rings, spheres, sheets and tubes of various sizes.
- C-C bonds are very strong.
- D. <u>Hydrocarbons</u>: Compounds containing carbon & hydrogen
 - a. Aliphatic: open or cyclic chains

Open Chains(Not Alice in... hahaha)

i. **Alkanes** : single bonds

ii. Alkenes : at least one double

bona

iii. Alkynes: at least one triple bond

b. Cyclic: ring structures

E. Summary

Alkanes

- A. Introduction
 - Hydrocarbons that contain only single bonds.
 - Carbons are either bonded to other carbons or hydrocarbons
 - Number of carbons dictates the shape of the chain
 - General formula: CnH₂n+2, n = # of carbons
- B. Hydrocarbon Formulae
 - The **Structural Formula** had the carbon backbone with the bonds sticking out with our without the hydrogen atom symbols present

The Condensed Formula shows the carbon backbone with the bonds sticking out

$$CH_3-CH_2-CH_2-CH_2-CH_3$$

 The Molecular Formula shows how many carbon and hydrogen are present without indicating the bonds.

• The Line Structural Formula shows the carbon backbone only

C. Types of Chains

- Straight Chain: all carbons are aligned in a single long chain
- **Branched Chain**: this is a main carbon "backbone" with other chains branching off of it
- Cyclic Chain: carbons are attached to each other in a ring-like structure CnH₂n

D. Naming Hydrocarbons

- The prefix indicates the number of carbon atoms in the longest chain
- The suffix is "ane"
- For a branched chain: number the backbone, use a prefix + "yl" to indicate the type of branch, then name the backbone
- For a cyclic chain: use a prefix "cyclo" in front of the alkane name.

Prefix	IUPAC Name	Formula
Meth	Methane	CH _{4(g)}
Eth	Ethane	$C_2H_{6(g)}$
Prop	Propane	$C_3H_{8(g)}$
But	Butane	C ₄ H _{10(g)}
Pent	Pentane	C ₅ H _{12(I)}
Hex	Hexane	C ₆ H _{14(I)}
Hept	Heptanes	C ₇ H _{16(I)}
Oct	Octane	C ₈ H _{18(I)}
Non	Nonane	C ₉ H _{20(I)}
Dec	Decane	C ₁₀ H _{22(I)}

E. Structural Isomers

• These occur when two different hydrocarbons have the same molecular formula (same number of C and H) but different structural formula.

ALKANE STRUCTURES AND FORMULAE

Alkane Name	Molecular Formula	Structural Formula	Condensed Formula

Alkenes & Alkynes

A. Alkenes

- Have at least one double bond
- There must be a minimum of 2 carbons
- General formula: CnH₂n
- Use the same prefixes as for alkanes
- Change the ending to "ene"
- Indicate the location of the bond by assigning the carbon backbone numbers
- The numbering begins closest to the double bond
- If there is more than one double bond-number as before and change the suffix to "diene" if there are 2, and "triene" if there are three

B. Alkynes

- · Have at least one triple bond
- There must be a minimum of 2 carbons
- General Formula: CnH₂n-₂
- Use the same prefixes and numbering as for alkanes and alkenes
- Change the ending to "yne"

C. Saturated vs. Unsaturated

- Saturated: contains the maximum number of single bonds (ALKANES)
- Unsaturated: contains at least one double or triple bond (ALKENES or ALKYNES)

D. Positional & Geometric Isomers

Positional: when two hydrocarbons have the same carbon backbone but different position of the double or triple bonds

Geometric Isomers: AKA **Stereoisomerism** – when two or more hydrocarbons have their atoms arranged in the same order but different 3-D shape

• Cis and Trans Isomers: at each side of a triple bond, the different groups can either be on the same side of the bond (cis) or opposite sides of the bond (trans)

E. Homologous Series

- Sequential arrangement of members of the same family (ie: methane, ethane, propane etc.)
- Exhibit similar properties, showing a gradual change as the arrangement changes size.
- All have the same general formula.

ALKENE STRUCTURES AND FORMULAE

Alkene Name	Molecular Formula	Structural Formula	Condensed Formula

ALKYNE STRUCTURES AND FORMULAE

Alkyne Name	Molecular Formula	Structural Formula	Condensed Formula