Stoichiometry

- Consider: 4NH₃ + 5O₂ → 6H₂O + 4NO
- Recall that many conversion factors exist:
 4 mol NH₃/5 mol O₂, 6 mol H₂O/4 mol NH₃, etc
- In words, this tells us that for every 4 moles of NH₃, 5 moles of O₂ are required, etc.
- "Stoichiometry" refers to the relative quantities of moles. It also refers to calculations that make use of mole ratios.
- · Recall also that molar masses provide factors:
- 1 mol NH₃ / 17 g NH₃, 32 g O₂ / 1 mol O₂
- Is 4 g NH₃ / 5 g O₂ a conversion factor?

Stoichiometry questions (1)

 $4NH_3 + 5O_2 \rightarrow 6H_2O + 4NO$

- How many moles of H₂O are produced if 0.176 mol of O₂ are used?
- How many moles of NO are produced in the reaction if 17 mol of H₂O are also produced?

Notice that a correctly balanced equation is essential to get the right answer

Stoichiometry questions (2)

 $4NH_3 + 5O_2 \rightarrow 6H_2O + 4NO$

- How many grams of H₂O are produced if 1.9 mol of NH₃ are combined with excess oxygen?
- How many grams of O₂ are required to produce 0.3 mol of H₂O?

Stoichiometry questions (3)

 $4NH_3 + 5O_2 \rightarrow 6H_2O + 4NO$

 How many grams of NO is produced if 12 g of O₂ is combined with excess ammonia?

Converting grams to grams

- Notice that we cannot directly convert from grams of one compound to grams of another. Instead we have to go through moles.
- Many stoichiometry problems follow a pattern: grams(x) ↔ moles(x) ↔ moles(y) ↔ grams(y)
- We can start anywhere along this path depending on the question we want to answer
- Q- for the reaction $2H_2 + O_2 \rightarrow 2H_2O$ what is the path we would take for the following
- Given 2 moles H₂O, calculate grams H₂O?
- Moles O₂ required for 36 g H₂?
- Grams of H₂O produced from 6 grams O₂?

Moving along the stoichiometry path

 We always use the same type of information to make the jumps between steps:

Molar mass of x Molar mass of y grams (x) \leftrightarrow moles (x) \leftrightarrow moles (y) \leftrightarrow grams (y)

Mole ratio from balanced equation

Given: $4NH_3 + 5O_2 \rightarrow 6H_2O + 4NO$

- a) How many moles of H₂O can be made using 0.5 mol NH₃?
- b) what mass of NH₃ is needed to make 1.5 mol NO?
- c) how many grams of NO can be made from 120 g of NH₃?

More Stoichiometry Questions

Follow the rules for significant digits. Show all calculations.

- 1. $2 C_4 H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2 O$ a) what mass of O_2 will react with 400 O_2
 - a) what mass of O₂ will react with 400 g C₄H₁₀?
 b) how many moles of water are formed in a)?
- 3 HCl + Al(OH)₃ -> 3 H₂O + AlCl₃
 How many grams of aluminum hydroxide will react with 5.3 moles of HCl?
- 3. Ca(ClO₃)₂ -> CaCl₂ + 3 O₂
 What mass of O₂ results from the decomposition of 1.00 kg of calcium chlorate?
- 4. The reaction of Ca with water can be predicted using the activity series. What mass of water is needed to completely react with 2.35 g of Ca?

- 5. $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$.
 - a) How many moles of carbon monoxide are required to react with 163.0 g of iron(III) oxide?
 - b) How many grams of CO₂ are produced from a reaction that also produces 23.9 grams of Fe?
- 6. $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 4H_2O + 2NO$
 - a) how many moles of copper(II) nitrate can be prepared from 17.0 moles of Cu?
 - b) how many grams of copper(II) nitrate can be prepared using 3.8 moles of HNO₃?
 - c) what mass of water results from the reaction of 8.50 kg of copper metal?