3 R Review - Unit 2 (quantities)

Percentage Composition

- Element mass \div compound mass $\times 100 \%$
- E.g. in $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}=11 \%$ ($2 \mathrm{~g} \div 18 \mathrm{~g} \times 100 \%$)

Significant Digits and Isotopic Abundance

- All digits to right of the first \# are significant
- In scientific notation all digits are significant
- For addition/subtraction: line up decimal
- For multiplication/division: \# digits = fewest
- Average atomic mass is equal to the sum of individual isotope masses multiplied by their \%

The mole

- There are 6.02×10^{23} particles in one mole
- Molar mass is calculated from periodic table

Simplest and molecular formulae

- Definitions of simplest \& molecular formula
- Determining simplest formula from \% composition, grams of reactants, or moles
- Calculating molecular formula from simplest formula and molar mass

Balancing Chemical and Nuclear Equations

- Balancing equations by inspection
- Balancing nuclear equations: α and β decay
- 3 types of radiation: alpha, beta, gamma
- $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$ are diatomic gases

The factor label method

- Creating conversion factors
- How to use the factor label method

Stoichiometry

- grams $\mathrm{x} \rightarrow$ moles $\mathrm{x} \rightarrow$ moles $\mathrm{y} \rightarrow$ grams y
- Factor label method to solve stoichiometry

Limiting reagents

- Actual/Ideal chart for limiting reagents
- The limiting reagent is the "given quantity"
- Shortcut method of determining limiting reagent

Percentage yields

- Percentage yield = actual/theoretical $\times 100 \%$
- Actual yield is given, theoretical is calculated
- 4 reasons why actual yield falls short

Review questions

For all questions calculate molar masses to two decimal places and give answers with the correct number of significant digits (remember: do not round your values until writing the final answer).

1. Give the percentage composition for each compound: a) $\mathrm{H}_{2} \mathrm{SO}_{4}$, b) $\mathrm{Ca}(\mathrm{OH})_{2}$.
2. Mg has 3 isotopes: ${ }^{24} \mathrm{Mg}(78.7 \%),{ }^{25} \mathrm{Mg}(10.1 \%),{ }^{26} \mathrm{Mg}(11.2 \%)$. Give the average atomic mass.
3. Calculate the molar mass of a) $\mathrm{H}_{2} \mathrm{SO}_{4}$, b) $\mathrm{Fe}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}$.
4. a) How many moles are in 16 grams of CuCl_{2} ? b) How much does 70 moles of NaCl weigh?
5. a) How many molecules are in exactly 4 moles of $\mathrm{H}_{2} \mathrm{O}$? b) How many hydrogen atoms are in exactly 4 moles of $\mathrm{H}_{2} \mathrm{O}$? c) How many hydrogen atoms are in 0.173 moles of $\mathrm{H}_{2} \mathrm{O}$?
6. What mass of magnesium oxide results when $56.3 \mathrm{~g} \mathrm{O}_{2}$ combines with excess magnesium?
7. Label as simplest formula, molecular formula, or both: a) CuCl_{2}, b) CO_{2}, c) O_{2}, d) $\mathrm{C}_{4} \mathrm{H}_{10}$.
8. A substance is $80 \% \mathrm{C}$ and 20% hydrogen by mass. a) What is the simplest formula? b) What is the molecular formula of the compound if the molar mass is $30 \mathrm{~g} / \mathrm{mol}$?
9. Balance these equations: a) $\mathrm{C}_{40} \mathrm{H}_{82}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$, b) $\mathrm{H}_{2} \mathrm{O}+\mathrm{Al}_{4} \mathrm{C}_{3} \rightarrow \mathrm{CH}_{4}+\mathrm{Al}(\mathrm{OH})_{3}$
10. Complete these nuclear equations: a) the alpha decay of ${ }^{150} \mathrm{Gd}$, b) the beta decay of ${ }^{60} \mathrm{Co}$.
11. What four things may cause actual yields to differ from theoretical yields?
12. Given the reaction $3 \mathrm{O}_{2}+4 \mathrm{NH}_{3} \rightarrow 2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}$, if 20.58 g of O_{2} combines with 26 g NH
a) What is the limiting reagent? b) What mass of water can theoretically form?
c) If 15 g of water is the actual yield, what is the percentage yield?
13. In a reaction, copper is heated with sulphur, forming cuprous sulphide. What is the \% yield if 97 g of cuprous sulphide forms from the combination of 100 g of Cu with 50 g of sulphur?
