Answers to Unit 5 Review: Hydrocarbons

Acetylene: the common name for ethyne (C₂H₂). Acyclic: an organic molecule that does not contain a cyclic structure.

Addition Reaction: A reaction in which a multiple bond is broken and new atoms are added to the carbons on either side of the multiple bond.

Aliphatic: a hydrocarbon that does not contain benzene.

Alkane: a hydrocarbon with only single bonds. Alkene: a hydrocarbon that has a double bond.

Alkyne: a hydrocarbon that contains a triple bond.

Aromatic: a molecule that contains benzene.

Bond energy: the energy needed to break a bond (or the energy released when a bond forms).

Organic chemistry: The study of carbon containing compounds with the exception of CO, CO2, and ionic compounds that contain carbon.

Petroleum: a mixture of organic molecules (mainly hydrocarbons) that is obtained via drilling.

Polymer: a long molecule made up of many small. identical, repeating units.

Saturated hydrocarbon: a hydrocarbon that does not have any double or triple bonds.

Unsaturated hydrocarbon: a hydrocarbon that has double and/or triple bonds.

Wöhler: he was the first person to synthesize an organic compound, showing that organic compounds are independent of life.

- Calorimeter: a device used to measure energy changes. A bomb calorimeter is a common type of calorimeter (consisting of a chamber, water, ignition wires, thermometer, stirrer, etc.).
- Cyclic: where atoms are bonded together in a circular or ring shape.
- Endothermic: a reaction in which energy is absorbed (thus, cooling the surroundings).
- Exothermic: a reaction in which energy is released (thus, heating the surroundings).
- Fractionation: (a.k.a. fractional distillation) where petroleum is refined. The petroleum is heated and molecules of similar sizes are extracted by cooling the vapour at a range of temperatures.

Monomer: the smallest repeating unit of a polymer.

- 2. a) Alkanes: C_nH_{2n+2} b) Alkenes: C_nH_{2n}
 - c) Alkynes: C_nH_{2n-2} d) Cycloalkanes: CnH_{2n}
- 4. a)

- 5. a) $2C_6H_{14} + 19O_2 \rightarrow 14H_2O + 12CO_2$ (5a has only 1 solution - a ratio of 2:19:14:12)
 - b) $C_6H_{14} + 8O_2 \rightarrow 7H_2O + 3CO_2 + 3CO$ $C_6^{"}H_{14}^{"} + 5O_2^{"} \rightarrow 7H_2^{"}O + 3CO + 3C$ (there are many other possibilities for 5b)
- 6. a) CH₃ b) CH₃-CH-CH₂-CH₃ CH₃-CH₂-CH=C-CH₂-CH₂-CH₃ CH₃CH₂CH₂-¢-¢-CH₂CH₂CH₂CH₂CH₃
 - e) 2,5,5-trimethylheptane
 - f) 3-methylcyclohexene
- 7. a) not isomers cyclopentane is C₅H₁₀, pentane is C₅H₁₂
 - b) structural isomers same chemical formula, different IUPAC names
 - c) geometric isomers same formula and same name (except for cis/trans)

- 7. d) structural isomers same formula but different IUPAC names (1,2... vs 1,3...)
 - e)geometric isomers cis-1-bromo-2-chlorethene versus trans-1-bromo-2chloroethene
 - f) not isomers they are the same molecule
- 8. Add Br₂ to each. Ethane will not react, ethene will discolour Br₂ (orange to colourless), a mole of ethyne will discolour twice as much Br₂ as a mole of ethene.
- 9. a) $\stackrel{\text{H}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{$
 - b) H—C≡C—H + Br-Br + Br-Br -> H-C|

9.	Bond	kJ/mol	#	required	#	released
a)	C-H	413	4	16 <u>5</u> 2	4	1652
	C=C	614	1	614		_
	Br-Br	193	1	193		
	C-Br	288			2	576
	C-C	348			1	348
	117 k	κ <mark>J rele</mark> a	sed	24 <u>5</u> 9		25 <u>7</u> 6
b)	Bond	kJ/mol	#	required	#	released
_	C-H	413	2	826	2	826

b)	Bond	kJ/mol	#	required	#	released
,	C-H	413	2	826	2	826
	C≡C	839	1	839		
	Br-Br	193	2	386		
	C-Br	288			4	11 <u>5</u> 2
	C-C	348			1	348
	275	kJ relea	sed	20 <u>5</u> 1		23 <u>2</u> 6

10. See "energy from hydrocarbons" handout 11. $q=cm\Delta T$ $c=q/m\Delta T=\frac{3.0 \text{ J}}{0.16 \text{ g x }78^{\circ}\text{C}}=0.24 \text{ J/(g°C)}$

The metal is silver. Silver is 0.24 J/(g°C) -pg. 568 12. a) $q=cm\Delta T = 4.18 \text{ J/(}g^{\circ}\text{C}) \times 350 \text{ g} \times 1.5^{\circ}\text{C} = 2.19 \text{ kJ}$ b) butane = $C_4H_{10} = 58.14 \text{ g/mol}$ # mol = 50.0 g x (1 mol)/(58.14 g) = 0.86 mol Molar heat of reaction has units of kJ/mol, = 2.19 kJ/0.86 mol = 2.55 kJ/mol

- 13. a) should be 2-methyl-3-hexyne
 - b) too many bonds on carbon #3
 - c) should include either cis or trans in name
 - d) no # for ene (e.g. 3-methyl-1-octene?)
 - e) should be 3,3-dimethylheptane
 - f) should be 4-ethyl-2,3-dimethylnonane